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BEM SOLUTION FOR THE PROBLEM OF FLUX OF A 
MULTICOMPONENT MIXTURE OF GASES OUT OF A 

MULTILAYER LANDFILL 

V. POPOV* AND H. POWER? 
Wessex Institute of Technology, Southampton SO40 7AA. U.K. 

SUMMARY 
A two-dimensional numerical model for convection-diffision flow of a multigas mixture through a multilayer 
porous medium was developed with the aim to be used for evaluation of emissions of gases from landfills. The 
proposed model is based on the boundary element-dual reciprocity method. Time-independent one-dimensional 
analytical solutions for a multilayer domain were found for the cases of a single gas and a two-gas mixture and 
used to verify the accuracy of the model. Although the proposed technique is a simple one, consisting only of 
boundary integrals, it was found that the technique can be applied with satisfactory accuracy to the problem at 
which it was initially aimed. 
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1. INTRODUCTION 

One of the most popular ways to dispose of domestic and industrial waste is to bury it under layers of 
soil, usually called landfill. A major concern derived from this disposal of waste is the generation of 
gases, mainly carbon dioxide (C02) and methane (CH& due to the degradation of waste materials in 
the repository. COz and CH4 are powerful infrared absorber gases. The presence of these gases in the 
atmosphere traps heat between the surface of the earth and the upper atmosphere. Therefore an 
increase in such gases can cause an increase in the earth’s temperature, an effect that is commonly 
referred to as the greenhouse effect. 

The primary source of gas production is the anaerobic microbial degradation of organic materials 
such as food waste, garden waste, paper, textiles, resins, bitumen, etc. This process begins after the 
waste has been in the landfill for 10-50 days. Although the majority of C& and C02 is generated 
within 20 years of landfill completion, emissions can continue for 100 years or more. 

Of the various gas byproducts, methane is the one of primary concern. Methane is produced by the 
action of micro-organisms on the degradable waste. The complex organic molecules in the above 
substances are broken down to smaller molecules. The process of forming methane is a two-stage 
one. First the large organic molecules are broken down by hydrolysis to smaller, more soluble 
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compounds. These include simple sugars, amino acids, fatty acids and alcohols. This stage is known 
as 'acidification'. The next stage involves further hydrolysis of the primary products to fatty acids. 
These are then metabolized by bacteria to produce methane. Landfills are estimated to be the major 
source of CHq emissions and account for about 38 per cent of total anthropogenic sources. 

Pressurization of the repository due to the internal gas production induces the emission of methane 
into the atmosphere. Methane ( C b )  is an important greenhouse gas. It plays a major role in 
controlling the abundance of both tropospheric ozone (03), which is an important greenhouse gas 
near the tropopause, and the hydroxyl (OH) radical, which controls the atmospheric lifetimes of other 
gases of climate imp~rtance.'-~ Methane can also be oxidized to form COZ. 

In 1991 the atmospheric concentration of CH4 was about 1.72 ppmv, which is more than double 
the pre-industrial level of about 0-8 ppmv.' The current annual rate of accumulation is about 13 ppbv 
or 37 Mt, which is lower than the annual rate of 20 ppbv observed in the late 1970~. '*~ 

The main objective of this work is to develop a 2D numerical model, based on the boundary 
element method (BEM), to solve the problem of the flux of a multicomponent mixture of gases out of 
a multilayer landfill. The boundary element method is now a well-established numerical technique for 
the analysis of engineering problems (for more details see Reference 5). One of its main advantages is 
the considerable reduction in data preparation in relation to domain methods, since only surface 
elements are necessary, as well as its versatility in dealing with subdomain matching, which is of 
crucial importance in the present problem. The basis of the method is that a fundamental solution is 
used to take some of or all the terms in the governing equation to the boundary. 

2. GOVERNING EQUATION 

The governing equation for the two-dimensional flow of a mixture of N compressible gases through a 
multilayer (M-layer) porous medium, when each layer is isotropic and homogeneous, is usually 
described by the following system of N x M equations (see e.g. References 6 and 7): 

( i =  1 ,..., N ,  j =  1 )..., M),  

where 

ci . 
D{ 
V/ 
Pi' 
d /  
d 
q Ith co-ordinate (m) 
t time (s). 

Formally the above equation is valid for a binary mixture, with D/ constant, and for a 
multicomponent mixture of N gases, with N >  2, when N - 1 of them behave as dilute components 
diffusing in a homogeneous mixture, which is considered as the carrying fluid (air in our case, 
initially trapped in the porous medium, which we will consider as only N2 with initial concentration 
0.7 kg m-3). The diffision coefficient of the dilute components in the multigas mixture is a function 
of the concentrations of each of the gases in the mixture. When the binary diffusion coefficients 

gas concentration of ith gas (kg m-3) 
diffusion coefficient of ith gas in jth layer (m2 s-l) 
velocity of mixture of gases in Zth direction injth layer (m s-l) 
production term for ith gas injth layer (kg mW3 s-l) 
reaction constant for ith gas injth layer (s-l) 
material porosity ofjth layer (%) 
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between one component and each of the other components of the mixture are approximately the 
same, it is found that to a first approximation the diffusion coefficients in (1) are independent of the 
concentrations (for more details see Reference 8). Here for simplicity we will restrict ourself to the 
case of constant diffision coefficients, although they can change from layer to layer. 

The diffision coefficient D for a porous medium differs from the difhion coefficient Do for a 
standard medium, usually a gas without any solid or liquid present. It is known that the pore structure 
influences the diffision regime. Imagine a porous medium under uniform pressure containing a 
multicomponent gas mixture. When the pore diameter is large enough for molecular diffision to 
prevail, the diffusion flux will be independent of the pore diameter. However, as the pore diameter 
decreases, the resistance due to molecular4oil particle collisions appears and the flux tends to 
decrease. The complex geometries of porous materials make it necessary to use equations that 
empirically relate the variable DIDo to porous structure parameters. 

The most frequently used equations are 

and 

where n represents porosity, while a and b or A and B are determined by fitting curves to experimental 
data. Tables containing values of the parameters a and b or A and B can be found in Reference 7. 
The velocity vector is given by Darcy’s law as the gradient of the total pressure of the mixture of 
gases, 

where 

p 
k’ 
p 

As in the case of the diffision coefficient Di,  the dynamic viscosity p is also a function of the 
concentrations of each of the gases in the mixture, which for the above case of a dilute mixture can be 
considered as a constant. 

total pressure of gases (N m-2) 
intrinsic permeability for jth layer (m2) 
dynamic viscosity of mixture of gases (N s m-2) 

The gas pressure function is given by 

N 

i= 1 
p = C U i C f ,  ( 5 )  

where 

a i  R i T  

Ri 
T absolute temperature (K). 

function reduces to the ideal gas equation, which is generally the case under landfill conditions. 

gas constant of ith gas (J K-I kg-I) 

The exponent determines the curvature of the gas pressure function. For di = 1 the gas pressure 



506 V. POPOV AND H. POWER 

Substitution of (4) and ( 5 )  into (1) leads to the non-linear partial differential equation system 

( i= 1 ,..., N ,  j =  1 ,..., M ) ,  

where 

5 
k i  kJ 

KL = -a ,  = -R,T 
P P 

(m kg-' s-l). 

The flux of th- ith gas in the direction of the normal n on the boundary of the jth layer i 

@/ =- -D! - -c i  KL- ( i= 1 ,..., N ,  j =  1 ,..., M ) ,  
1 ' :  [k:l( 31 

given by 

(7) 

where the normal vector is defined outwardly to each layer. 
The following boundary and initial conditions have to be satisfied: on the impermeable surfaces, 

on the free surface, 

ci = Ci, or ci = 0, 

according to whether the gas under consideration is initially on the repository or not; and at t = 0, 
Ci = Ci0 or ci=O inside the fluid domain, according to the above free surface condition. 

The above boundary conditions as well as the geometry of the multilayer domain are shown in 
Figure 1. 

At each interface the flux leaving one layer has to be equal to the flux entering the next layer for 
each of the gases. Therefore it is necessary that the following matching conditions hold at the mth 
interface between layers: 

( i=1 ,  ..., N ,  m = l ,  ..., M-1). 

ci=C0 or ca=O 

@&() 

Figure 1. Boundary conditions and geometry of multilayer domain 
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In addition to the above conditions, the concentration needs to be continuous at each interface, i.e. 

(9) 
The 2N(M - 1) matching conditions (equations (8) and (9)) together with the N x M equations for 

the concentration on each layer and the boundary and initial conditions complete the formulation of 
the problem. 

When the constants K / ,  D,! and d i  are the same for all gases in each layer, i.e. equal to KJ, DJ and 
d', the addition of all N equations (6) yields a single equation for the mixture of gaqes in a multilayer 
domain (single-gas equation), 

el,,, = cy+'l,,, (i = 1, .  . . , N, m = 1, .  . . , A 4  - 1). 

.ac 
+ P j - d j c - n J - = O  ( j =  1, ...,hf), (10) at 

where 
N .  N 

i= 1 i= 1 
P' = x Pi, c = c c i .  

The flux of the mixture of gases in the direction of the normal n on the boundary of the jth layer is 
given by 

ac a' = -(D' +cK')- (j = I , .  . . , M). 
an 

The matching conditions at each interface now become 

= -(D"+' + cK"" ( m =  1, ..., M -  I ) ,  (12) 

while the continuity equation becomes 

cy,  = P+'l ,,, ( m = l ,  ..., M - 1 ) .  (13) 

The following boundary and initial conditions have to be satisfied: on the impermeable surfaces, 

and on the free surface, 
N 

i= 1 
c = c, = 1 c,. 

3. BOUNDARY ELEMENT FORMULATION 

The main difficulty in applying the BEM to the above non-linear system of partial differential 
equations is the lack of a fimdamental solution for non-linear equations. Thus it is necessary to 
rewrite the partial differential equations in terms of a linear operator (with a known hdamental  
solution), with the non-linear terms appearing as non-homogeneous terms (pseudobody forces). In 
this way, starting from the integral representation formula for the linear operator, an integral equation 
can be found where the non-linear terms generate domain integrals. In early bow* element 
analysis the evaluation of domain integrals was done using cell integration, a technique which, whilst 
effective and general, made the method lose its boundary-only nature, introducing an additional 
internal discretization. 
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Several methods have been developed to take domain integrals to the boundary in order to 
eliminate the need for internal cells. One of the most effective to date is the dual reciprocity method 
(DRM) introduced by Nardini and Brebbia.' This method is closely related to the method of 
particular integrals introduced by Ahmad and Banejee," which is also used to transform domain 
integrals to boundary integrals. In the latter method a particular solution satisfying the non- 
homogeneous partial differential equation (PDE) is first found and then the remainder of the solution 
satisfying the corresponding homogeneous PDE is obtained by solving the corresponding integral 
equations. The boundary conditions for the homogeneous PDE must be adjusted to ensure that the 
total solution satisfies the boundary conditions of the original problem. The DRM also uses the 
concept of particular solutions, but instead of solving for the particular solution and the homogeneous 
solution separately, it applies the divergence theorem to the domain integral terms and converts the 
domain integrals into equivalent boundary integrals. For the case in which the non-homogeneous 
term is a known function, the method of particular integrals is numerically more efficient than the 
DRM, but for the case in which the non-homogeneous term is an unknown function, as is the present 
case, the two methods are numerically equivalent. 

In order to apply the BEM to find the solution of the non-linear system of partial differential 
equations (6), we rewrite them in terms of the Laplacian linear operator, with the non-linear, the 
decay, the source and the non-permanent terms as non-homogeneous terms of the Laplacian operator: 

N .  
(D/ + K/ci)V2ci + ci (KniV2C,)(l - Smi)  = R/  ( i  = 1, . . . , N ,  j = 1, . . . , M ) ,  

where 

and 
From the above system we can obtain a non-homogeneous Laplace equation for each gas, where 

the non-homogeneous terms are functions of the concentrations of all the gases involved and their 
first derivatives, i.e. 

is the Kronecker delta function. 

where 
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From the Green integral representation formula it is found that the gas concentration at a point x for 
the ith gas andjth layer is given by 

Here c*(x, y) is the fundamental solution of the Laplace equation, which for an isotropic two- 
dimensional medium is given by 

where r is the distance from the point of application of the concentrated unit source to any other point 
under consideration, i.e. r = Ix - y( ,  qi@) = aci(’y)/8n and q*(x, y )  = aC*(x, y)/an. Notice that in (16) 
all the integrals are over the boundary, with the exception of the one corresponding to the term b&. 
The constants A(x) have values between unity and zero, being equal to 4 for smooth boundaries. It is 
also important to point out that the above equation holds for points inside the porous medium, in 
which case A(x) = 1. 

In the above equations we have written x instead of x and y instead of y and for convenience this 
notation will be used from here on. 

In order to express the domain integral in (16) in terms of equivalent boundary integrals, a DRM 
approximation is introduced. The basic idea is to expand the term b / b )  using radial approximation 
functions, i s .  

JJ+IJ 

b i b )  = c fqy,.“)ai:, (i = 1, .. . ,N ,  j = 1,. . . , M ) ,  
k= 1 

where b / e )  is the value of the function b{ at the point y. The functions f J(y, 2) are approximating 
functions which depend only on the geometry of the problem, while the constants u i  are unknown 
coefficients. The approximation is done at J j  + Zi nodes, i.e. JJ boundary nodes and ZJ internal nodes. 
Generally in the DRM approach the function f ’(y, 2)  is chosen as 

f’b, zk) = 1 + R ’ b ,  zk), (18) 

where R i b ,  2) is the distance between a prespecified fixed collocation point zk and a field point y 
where the function is approximated, i.e. RJb, 2) = Iy - $1. 

The function (18) is a member of a family of functions known as radial basis functions, related to 
the theory of mathematical interpolation. 

To obtain the coefficients u i  in (17), we have to assume that the matrix generated by the evaluation 
of the function (1 8) at all the collocation points is non-singular. Michelli” has proved that when the 
nodal points are all distinct, the matrix resulting from a radial basis function is always non-singular. 

With this approximation for the non-homogeneous term b { b )  the domain integral in (1 6) becomes 

To reduce the last domain integral in the above equation to equivalent boundary integrals, let us 
define a new auxiliary non-homogeneous Laplacian field i?(’y,#) for each collocation point zk as 

VZt’b, zk) = f j ( y ,  zk), (20) 
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whose particular solution for the 2D problem, when f’b, 2) is given by (1 8), is 

Applying the Green formula to the non-homogeneous Laplacian field 2 j (x ,  2) at a point x ,  we 
obtain 

Substituting the last equation into (19), the domain integral can be recast in the form 

c*(x, y)b,!QdSZ, = q*(x, y)ti(y, #)dry - c*(x, y)G’@, #)dry 
J f Y  k=l 

Using the resulting expression in (16), one fmally arrives at a boundary- only integral representation 
formula for the gas concentration, 

A(x)ci(x) + J, q*(x* y)cib)dry - Jrj c*(x,  y)qib)dry 

For the numerical solution of the problem, equation (21) is written in a discretized form in which 
the boundary integrals are approximated by a summation of integrals over individual boundary 
elements, i.e. 

which can be rewritten as 

( i =  1 ,..., N ,  j =  1 ,..., M ) ,  
where H&x) and GA(x) are the resultants of integration over the boundary elements and Lj is the 
number of boundary elements in thejth layer. Equation (22) can be written in matrix form, which 
yields 

- G’q, = (Hie’  - G’QJ)q!. (23) 
The coefficients of a/ in the above equation can be calculated by evaluating equation (17) at all 

4 +I nodes, i.e. 

(24) j - Fi)-Ib/ mi - (  I ’  

and therefore its evaluation depends on the DRM approximation of each of the terms defining the 
non-homogeneous term b( . 
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Substituting equation (24) into (23) yields 

To obtain the DRM approximation of the first derivative of the concentration, let us define the 
following approximation for the concentration, 

where a{ # 9;. Differentiating equation (26) produces 

aci aFJ ' _ -  - -pp'. 
8x1 a*, 

Rewriting equation (26) as = (Fj)-'ci, equation (27) becomes 

The time derivative is approximated using a simple finite difference representation 

where cil are the nodal values of ci at time t +At  and c, are the values at time t. For the first time 
step, cio = cil = ci(t = 0). 

In order to deal with the non-linear terms appearing in (13, a standard linear approximation can be 
used, where the approximated gradient of the concentration is written as the diagonal matrixes (VI) 
containing the values of the differential operators 

for a priori estimation of the concentration at the interpolation nodal points at each time step; thus 

( i =  1, ..., N ,  j = 1, ... , M ,  I = 1,2), 

where 

The above expression for the non-linear terms makes the procedure iterative, since it is necessary 
to assume a priori estimation of the concentration at each time step, E(tm + A t )  = c(t,), at the 
interpolation nodal points, in order to evaluate the concentration c(tm +At) in the first iteration, using 
the corresponding boundary-only integral equation discussed before. Letting the evaluated c(tm + At) 
in the nth iteration become E(t, + A t )  in the (n f 1)th iteration, the process is continued until 
convergence is obtained at each time step. 
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Now the non-homogeneous term b! becomes 

where D', A{ and BL represent diagonal matrices containing terms 

N N 

and 

respectively. 
Defining 

and substituting the expression for bi, equation (25) becomes 

Defining the new matrix 

the following expression is obtained: 
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where 0, and 0, take values between zero and unity. After this time step scheme has been applied, 
equation (28) becomes 

Using the same linear approximation at each iteration as before, the matching conditions on the 
interface of the layers, equation (8), take the form 

( i =  1 ,..., N ,  m =  1 ,..., M -  1). 

4. NUMERICAL EXAMPLES 

To validate the numerical model given in Section 3, a few numerical examples are presented for the 
cases of a single gas and a binary mixture, in all the numerical examples the values of 0, and 0, were 
chosen to be 0.5 and 1, respectively. In the first example of a single gas a homogeneous isotropic 
porous medium with 10 m x 10 m vertical cross-section was taken as a model domain with porosity 
n = 50%, diffusion coefficient D = 1 a 0  m2 day-' , reaction constant d = 0.0 s-l source term 
P=0.005 kg m-3 day-' and K =  1, 10 and 100 m5 kg-I day-'. The geometry of the model 
domain, boundary conditions and locations of internal points for each case study are shown in Figure 
2. These locations were chosen through numerical experiments, so the best convergence was 
obtained. As can be observed, the number and location of internal points depend on the problem 
parameters. It is possible to increase the accuracy of the solution by increasing the number of internal 
points, but this incurs a heavy computing time penalty. 

It is important to note that the matrix F is non-singular if the nodal points are all distinct; however, 
when using a large number of internal points, the condition number of the matrix F becomes very 
large and therefore the matrix F behaves numerically as singular. Recently Powell12 has developed an 
efficient stable algorithm to solve this inversion problem when the number of nodal points is large; 
here we have used only standard Gauss elimination with pivoting, restricting ourselves to not too 
large number of internal points. 

Figures 3(a)-3(c) show the concentration profiles for different times and different values of K. In 
each case the initial concentration of gas was taken to be equal to zero, Co=Oy with zero-flux 
boundary condition through the bottom and at the two sides of the model domain. 

Comparison of the steady state condition obtained after simulation for a long enough period of time 
and the steady state analytical solution (33) given in the Appendix (to our knowledge these analytical 
solutions have not been reported previously in the open literature) is shown in Figure 4(a) for 
different values of K. It can be observed that the model shows good agreement with the analytical 
solution. 

The time variation of the flux through the upper boundary obtained and the asymptotic value 
evaluated from (35) are shown in Figure 4(b) for different values of K. The model is in good 
agreement with the analytical solution for the flux, showing that the mass balance is preserved. 
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I 0  t t + ~ t t + t t  
* + + + + * + + +  - 

5 . .  . 
1 a t  + x + I .I x x + 

Figure 2. Geometry of model domain, boundary conditions and locations of internal points 

It can be noted that the maximum error in flux at the free surface increases when K increases, being 
equal to 5.5 per cent for K= 100 m5 kg-' day-'. 

When the same numerical example was performed for K =  100 m5 kg-' day-' with a different 
value for the boundary condition at the free surface, CO = 0.7 kg m-3 instead of zero, an unexpected 
error of 32 per cent for the flux through the free surface was found (see Figure 5) .  

It is important to point out that in both cases, with and without zero concentration at the free 
surface, the steady state flux through the free surface has to be the same, since the two cases have the 
same source term. In the case of Co = 0 the flux through the free surface is given by D(ac/an) with 
D =  1 m2 day-', but in the case of Co=O-7 kg mP3 the flux is given by (D+ KCo)(aC/an) with 
K =  100 m5 kg-' day-' and D = 1 m2 day-'. Therefore the magnitude of the normal derivative in 
the case of non-zero boundary condition has to be two orders of magnitude smaller than in the other 
case, This difference appears to be the reason for the discrepancy found in the estimation of the flux 
in the case of non-zero boundary condition at the free surface. 

To overcome this difficulty, a technique commonly employed in laboratory studies, but not in 
numerical analysis, is used. By scaling the flow domain, as is usually done on a physical model, it is 
possible to obtain a concentration profile with a larger gradient, since VC has the dimension of 
(ma~s)/(length)~. To ensure complete physical similarity between the original problem and the scaled 
one, we must change the parameters of the model according to the scaling factor; in this way the 
parameters D and K decrease in the scale model, since they are of the order of (length)2/(time) and 
(length)5/(mass x time) respectively. One of the major difficulties in implementing a physical model 
is that sometimes the magnitude of one variable or parameter of the model becomes impossible to 
obtain in a laboratory experiment, requiring a distorted model. This problem does not present itself in 
a numerical model, because there is no physical limitations on predicting the magnitude of a quantity, 
as long as it is consistent with the scaling factor to ensure physical similarity. This is the case of the 
present example, where the concentration increases with the scaling factor, reaching values greater 
than unity, since the concentration has the dimension of (rnas~)/(length)~. In this way, as the scaling 
factor (unit length (UL)) increases, the concentration and its derivative approach the same order of 
magnitude (see Table I). Table I and Figure 5 show how the accuracy of the flux is improved by the 
scaling process. 
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0 

Y (m) 

Figure 3. Concentration profiles for different times and different values of K 

The next two numerical examples, each with a different boundary condition at the free surface 
(Co = 0 and 0.7 kg m-3), were carried out for a rectangular repository of width 6 m, consisting of 
three layers of heights I' = l2 = 5 and l3 = 2 m, with values of the parameter K at each layer of 
K' = 1000, K2 = 1200 and K3 = 100 m5 kg-' day-', production terms P' =0-003, =0.005 and 

= 0 kg m-3 day-', diffusion coefficients D' =I? =d = 1.5 m2 day-' and zero reaction 
constant. 
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Figure 4. (a) Comparison of concentration profiles with analytical solution (A.S.) for different K. (b) Change in flux on upper 
boundary and asymptotic solution for different K 

Similar difficulties to those found for the case of the one-layer domain with surface concentration 
different from zero were encountered when dealing with the multilayer problem even in the case of 
Co = 0 kg m-3 , because the concentration at each interface is different from zero and hence for large 
values of K the estimation of the flux-matching condition will depend strongly on the accuracy of the 
normal derivative at each interface. In the present numerical examples a scaling factor of 1/1000, i.e. 
unit length (UL) of 1000 my was used. 

Figures 6(a) and 6@) show the concentration profiles for the case of Co = 0 kg m-3 during the 
transient process and at the steady state respectively, while Figure 6(c) shows the change in flux with 
time through each interface and at the free surface. In these figures the concentration profile and flux 
at the steady state are compared with the analytical solution given in the Appendix, showing good 
agreement. 

The maximal error in the concentration profile was about 4 per cent and the flux error through the 
first interface 0, = 5 m) was 0.20 per cent, through the second interface (y = 10 m) 1.15 per cent and 
through the free surface (y= 12 m) 8.79 per cent, which is to be expected owing to the boundary 
layer effect at the free surface. 

It can also be noticed that the gas flows from the second layer into the first and third layers in the 
first period, since 9 = 0 . 0 0 5  > P' =0.003 > p  = O  kg m-3 day-', but after some time, when the 
concentration in the first layer has increased sufficiently, the gas starts to flow from the first to the 
second layer and from the second to the third layer. 
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Figure 5. Comparison of accuracy of results with analytical solution without and with scaling for (a) concentration and (b) flux 

Figures 7(a)-7(c) are equivalent to Figures 6(a)-6(c) but for the case of non-zero boundary 
condition at the free surface, Co = 0.7 kg mg-3. In this case more accurate results were obtained than 
in the previous case, because the boundary layer effect is much smaller. The maximum error obtained 
was 2.85 x low4 per cent for the concentration and 0.17 per cent for a@'), 0-13 per cent for @(Lz) 
and 0.12 per cent for @(L3). It is important to point out that this case is one with physical meaning 
corresponding to the case of the flux of the mixture of gases. 

For the case of two gases, binary flow, we will first consider rectangular domain of 10 x 10 m2, 
consisting of two layers of heights I' = 7 and Zz = 3 m. 

The parameters K! and D/ are assumed to be the same for both gases but different in each layer, so 
the obtained numerical results can be compared with the developed analytical solutions (see 
Appendix). Values of the parameters are K: = Kj = 10 and K: = K i  = 3 m5 kg-' day-' and 
D: = 0: = 0: = 2 mz day-'. The decay term di  is assumed to be zero for both gases. 

Table I. Improvement in accuracy of model by scaling 

1 oo 7 x lo-' 7.04 x 10-4 9.3 x 10-4 

Id 7 x lo5 7.04 x 104 7.06 x lo4 
10' 7 x lo2 7.04 x loo 7-78 x 10' 

32 
10-5 
0.26 
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Figure 6 .  (a) Change in concentration profile with time. @) Steady state concentration profile. (c) Change in flux with time. 
C, = 0 kg m-3 

The initial concentrations are taken to be cI(x, y, 0) = 0.0 and c ~ ( x ,  y, 0) = 0.7 kg m-3 and the 
boundary conditions at the free surface are q ( x ,  (I' + Z'), t)  = co = 0.0 and c&, (I' + Z'), t) = 
0.7 kg m-3. All production terms are zero, except P,' = 0.005 kg m-3 day-'. 

Figures 8(a>-8(b) show the concentration profiles during the transient process and at the final 
steady state for each gas respectively. Figure 8(c) shows the change in flux with time through the 
interface between the two layers and at the free surface for each gas. This figure also presents the 
asymptotic condition corresponding to the case where the gas emission to the atmosphere is equal to 
the total production. As expected, the flux of the first gas through the interface increases faster than 
the flux through the free surface, since this gas for t = O  is not present in the domain and has 
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Figure 7. (a) Change in concentration profile with time. (b) Steady state concentration profile. (c) Change in flux with time. 
C, = 0.7 kg m-3 

production only in the first layer. The flux of the second gas through the interface increases slower 
than the flux through the free surface, since this gas is present inside the domain for t = 0, has no 
production in both layers and there is flux of both gases from the first layer into the second layer. 

In the second numerical example, with higher values of the constants K!, a rectangular domain of 
1 x 1 m2 was considered, consisting of two layers of heights 1' =0.8 and p=O.2 m. In this case, 
since the values of K/ are much higher than in the previous example, i.e. K: = Ki = 100 and 
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Figure 8. Concentration profiles (a) during transient process and (b) at final steady state for each gas. (c) Change in flux with 
time at interface between two layers and at free surface for each gas 

KT = K; = 10 m5 kg-' day-', a much higher density of internal points is needed in order to achieve 
the required accuracy of results, which makes this estimation more expensive in terms of computer 
time. The small porous domain was chosen in this case in order to achieve the requirement of a higher 
density of internal points with only a few of them. Here the constants D{ were taken as 
Di = Di = 0: = = 1 m day-', while production terms and initial and boundary conditions 
were the same as in the previous numerical example. 

Figures 9(a) and 9(b) show the concentration profiles during the transient process and at the h a 1  
steady state compared with the analytical solution for each gas respectively. In Figure 9(c) the 
changes in flux through the free surface for the fist and second gases are presented, as well as the 
change in total flux as the sum of the two fluxes. It can be observed that the total flux curve behaves 

2 
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as a step function for high values of K;, reaching the steady state constant value in a very short time, 
while its components are still changing. It is known that such a behaviour is very difficult to predict 
and usually in numerical models it causes oscillatory behaviour, which is not present here. 

5. CONCLUSIONS 

From the comparison between the obtained numerical results and the corresponding analytical 
solutions we can conclude that the proposed numerical technique is a reasonable and simple one, 
consisting only of boundary integrals, for the solution of the problem of flux of a multicomponent 
mixture of gases out of a multilayer landfill. 
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As was pointed out before, the main advantage of this kind of boundary-only formulation in 
relation to domain methods is the reduction in data preparation, since only surface elements are 
necessary. From the mathematical point of view the present numerical model tested here for two 
gases in a three-layer landfill of rectangular shape can be implemented for the general case of a 
repository of arbitrary shape consisting of n layers and m gases, only requiring more computer 
capacity. 

A numerical model such as the one presented here, which can simulate the migration of gases 
through a landfill and their release into the atmosphere, can be used as an efficient tool for the 
evaluation of possible control structures to minimize the release of such gases, as well as a way to 
estimate and predict the amount of gases released. 
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APPENDIX: ANALYTICAL SOLUTIONS 

In general, equation (1) cannot be solved analytically, but with some simplifications the analytical 
solution for the time-independent form of (1) can be obtained (steady state). 

Let us first consider the ID case of a single gas in a multilayer domain with constant coefficients 
DJ and ZQ in each layer and reaction coefficients d equal to zero. Under these conditions, equation (1) 
becomes 

+ P J = O  ( j =  1, ..., M ) ,  

with boundary conditions (see Figure 10) 

dc 
- = 0  at y = O ,  
dY 

and matching conditions 

c = c 0  at Y = L ~  

= (0"+' + (m = 1, . . . , M - l), 

Integrating equation (29) twice and using the boundary and matching conditions, we obtain 

(33) 1 Cb) = -- K J  "'+J[(g) - , i ( p J g + A j y + B j )  , Y E [ P , L q ,  
2 2 
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Figure 10. 1D model domain for analytical solution 

where 
j -  1 

m=l 
A' = 0,  A' = C [(P - P+')L"] ( j  = 2, . . . , M), (34) 

with 
m 

k= 1 
Lrn = c Ik, LO = 0 

and Zk the thickness of the kth layer (see Figure 10). 
Finally the expression for the flux is given as 

(35) 
dc a'@) = - (Dj  + K ~ c )  - = A' + Pjy,  y E ( P I ,  L']. 
dY 

In the case of two gases the analytical solution can be found if we consider the same simplifications 
as before, with the addition that the constants have to be the same for both gases in each layer. The 
main difference between this case and the previous one is that now the production term, initial and 
boundary conditions for each gas are different. Using these simplifications, equation (1) becomes 

where c=cl  f c2, with boundary conditions (see Figure 10) 

- = O  dci at y = O  ( i= l ,2 ) ,  
dY 
ci = o or ci = ci0 at y = L~ 
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and matching conditions 

= c7+llm (i = 1,2, m = I,. . . , M - I). 
As was shown in Section 2, if we add the equations for i =  1 and 2, the total emission of the two 

gases can be determined using the single-gas analytical solution. 
If we assume that one of the gases, e.g. i = 1, has no production term, i.e. P: = 0, which is true in 

the case of landfills, corresponding to the simulation of the air inside the repository, then the 
following equation for cl@) is obtained: 

The solution for the second gas is obtained from the relation 

c2@) = c@) - C l O I  

where the total concentration c is found from (33). 
The following expressions for the fluxes of the first and second gases are obtained: 

C P { = - D J - - ~ - ~ ~  .& = o  (j=i, ..., M ) ,  
dY 

where A; is given by (34) as 
j -  1 

m= I 
A{ = C [(e - q + ' ) L m ]  ( j  = 2, . . . , A4). 1 A2 = 0,  
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